
Implementation and Testing
(9 hours)

Module III

Object-oriented design using the UML

• Software design and implementation is the stage in the software
engineering process at which an executable software system is
developed.

• Software design is a creative activity in which you identify software
components and their relationships, based on a customer’s
requirements.

• Implementation is the process of realizing the design as a program.

• Design and implementation are closely linked, and you should
normally take implementation issues into account when developing a
design.

• 1. To show how system modeling and architectural are put into
practice in developing an object-oriented software design.

• 2. To introduce important implementation issues that are not usually
covered in programming books.

These include software reuse, configuration management and open-
source development.

Two aims:

Object-oriented design using the UML

• An object-oriented system is made up of interacting objects that
maintain their own local state and provide operations on that state

• Object-oriented design processes involve designing object classes and
the relationships between these classes.

• Objects include both data and operations to manipulate that data.

System context and interactions

• System context models and interaction models present
complementary views of the relationships between a system and its
environment:

• A system context model is a structural model that demonstrates the
other systems in the environment of the system being developed.

• An interaction model is a dynamic model that shows how the system
interacts with its environment as it is used.

• The context model of a system may be represented using
associations.

• Associations simply show that there are some relationships between
the entities involved in the association.

• You can document the environment of the system using a simple
block diagram, showing the entities in the system and their
associations.

System context for the weather station

Weather station use cases

Usecase description-Report weather

Architectural design

• Once the interactions between the software system and the system’s
environment have been defined,

• Identify the major components that make up the system and their
interactions. Then design the system organization using an
architectural pattern such as a layered or client–server model

High-level architecture of weather station

The weather station is composed of independent
subsystems that communicate by broadcasting messages
on a common infrastructure(Communication link here)

Each subsystem listens for messages on that infrastructure
and picks up the messages that are intended for them.
This “listener model” is a commonly used architectural
style for distributed systems.

• Benefit :it is easy to support different configurations of
subsystems because the sender of a message does not
need to address the message to a particular subsystem

Architecture of data collection system

• The Transmitter and Receiver objects
are concerned with managing
communications

• The WeatherData object encapsulates
the information that is collected from
the instruments and transmitted to the
weather information system.

• This arrangement follows the
producer–consumer pattern

Object class identification

Various ways of identifying object classes in object-oriented systems :

1. Use a grammatical analysis of a natural language description of
the system to be constructed. Objects and attributes are nouns;
operations or services are verbs.

2. Use tangible entities (things) in the application domain such as
aircraft, roles such as manager, events such as request,
interactions such as meetings etc.

3. Use a scenario-based analysis where various scenarios of
system use are identified and analyzed in turn.

Weather station objects

Design models

• Two kinds of design model:

1. Structural models, which describe the static structure of the
system using object classes and their relationships.

2. Dynamic models, which describe the dynamic structure of the
system and show the expected runtime interactions between the
system objects.

Three UML model types:

1. Subsystem models, which show logical groupings of objects into
coherent subsystems. These are represented using a form of class
diagram with each subsystem shown as a package with enclosed
objects. Subsystem models are structural models.

2. Sequence models, which show the sequence of object interactions.
These are represented using a UML sequence or a collaboration
diagram. Sequence models are dynamic models.

3. State machine models, which show how objects change their state in
response to events. These are represented in the UML using state
diagrams. State machine models are dynamic models.

• A subsystem model is a useful static model that shows how a design is
organized into logically related groups of objects.

• Sequence models are dynamic models that describe, for each mode
of interaction, the sequence of object interactions that take place.

Sequence diagram describing data collection

1. The SatComms object receives a request from the weather information system
to collect a weather report from a weather station. It acknowledges receipt of this
request. The stick arrowhead on the sent message indicates that the external
system does not wait for a reply but can carry on with other processing.
2. SatComms sends a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates that
SatComms does not suspend itself waiting for a reply.
3. WeatherStation sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.

4. Commslink calls the summarize method in the object WeatherData and waits
for a reply

5. The weather data summary is computed and returned to WeatherStation via the
Commslink object.
6. WeatherStation then calls the SatComms object to transmit the summarized
data to the weather information system, through the satellite communications
system

Weather station state diagram

1. If the system state is Shutdown, then it can respond to a restart(), a reconfigure()
or a powerSave() message. The unlabeled arrow with the black blob indicates that
the Shutdown state is the initial state. A restart() message causes a transition to
normal operation. Both the powerSave() and reconfigure() messages cause a
transition to a state in which the system reconfigures itself. The state diagram
shows that reconfiguration is allowed only if the system has been shut down.

2. In the Running state, the system expects further messages. If a shutdown()
message is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the Summarizing
state. When the summary is complete, the system moves to a Transmitting state
where the information is transmitted to the remote system. It then returns to the
Running state.

4. If a signal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in turn to
collect its data from the associated sensors.

5. If a remoteControl() message is received, the system moves to a controlled state
in which it responds to a different set of messages from the remote control room.
These are not shown on this diagram.

Interface specification

Weather station interfaces

Design Patterns

• The pattern is a description of the problem and the essence of its
solution, so that the solution may be reused in different settings. The
pattern is not a detailed specification.

• Patterns have made a huge impact on object-oriented software design

• They have become a vocabulary for talking about a design

• Patterns are a way of reusing the knowledge and experience of other
designers. Design patterns are usually associated with object-oriented
design.

• The general principle of encapsulating experience in a pattern is one
that is equally applicable to any kind of software design.

Four essential elements of design patterns

1. A name that is a meaningful reference to the pattern.

2. A description of the problem area that explains when the pattern may
be applied.

3. A solution description of the parts of the design solution, their
relationships and their responsibilities.It is a template for a design
solution that can be instantiated in different ways. This is often
expressed graphically and shows the relationships between the objects
and object classes in the solution.

4. A statement of the consequences—the results and trade-offs—of
applying the pattern. This can help designers understand whether or not
a pattern can be used in a particular situation.

Two different graphical presentations of the
same dataset:

• Graphical representations are
normally used to illustrate the
object classes in patterns and
their relationships.

• These supplement the pattern
description and add detail to
the solution description.

IMPLEMENTATION ISSUES

• Software engineering includes all of the activities involved in software
development from the initial requirements of the system through to
maintenance and management of the deployed system.

• A critical stage of this process is, of course, system implementation,
where you create an executable version of the software.

• Implementation may involve developing programs in high- or low-
level programming languages or tailoring and adapting generic, off-
the-shelf systems to meet the specific requirements of an organization.

Aspects of implementation
1. Reuse:

• Most modern software is constructed by reusing existing components or
systems. When you are developing software, you should make as much use as
possible of existing code.

2. Configuration management:
• During the development process, many different versions of each software

component are created. If you don’t keep track of these versions in a
configuration management system, you are liable to include the wrong
versions of these components in your system.

3. Host-target development
• Production software does not usually execute on the same computer as the

software development environment. Rather, you develop it on one computer
(the host system) and execute it on a separate computer (the target system)

1.Reuse
Different Levels of reuse:

1. The abstraction level: At this level, you don’t reuse software directly but
rather use knowledge of successful abstractions in the design of your
software.eg. Design patterns and architectural patterns

2. The object level: At this level, you directly reuse objects from a library
rather than writing the code yourself. To implement this type of reuse, you
have to find appropriate libraries and discover if the objects and methods
offer the functionality that you need. For example, JavaMail library.

3. The component level: Components are collections of objects and object
classes that operate together to provide related functions and services. An
example of component-level reuse is where you build your user interface
using a framework.

4. The system level: At this level, you reuse entire application systems. This
function usually involves some kind of configuration of these systems. This
may be done by adding and modifying code or by using the system’s own
configuration interface

Software reuse

Costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and
assessing whether or not it meets your needs.

2. Where applicable, the costs of buying the reusable software. For
large off-theshelf systems, these costs can be very high.

3. The costs of adapting and configuring the reusable software
components or systems to reflect the requirements of the system
that you are developing.

4. The costs of integrating reusable software elements with each other
(if you are using software from different sources) and with the new
code that you have developed.

• By reusing existing software, you can develop new systems more
quickly, with fewer development risks and at lower cost. As the reused
software has been tested in other applications, it should be more
reliable than new software

• How to reuse existing knowledge and software should be the first
thing you should think about when starting a software development
project.

2.Configuration management

• Configuration management is the name given to the general process of
managing a changing software system. The aim of configuration
management is to support the system integration process so that all
developers can access the project code and documents in a controlled
way, find out what changes have been made, and compile and link
components to create a system.

• Software configuration management tools support each of the above
activities. These tools are usually installed in an integrated
development environment, such as Eclipse.

Four fundamental configuration management
activities:
• 1. Version management, where support is provided to keep track of the different

versions of software components. Version management systems include facilities
to coordinate development by several programmers. They stop one developer from
overwriting code that has been submitted to the system by someone else.

• 2. System integration, where support is provided to help developers define what
versions of components are used to create each version of a system. This
description is then used to build a system automatically by compiling and linking
the required components.

• 3. Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these
problems and when they are fixed.

• 4. Release management, where new versions of a software system are released to
customers. Release management is concerned with planning the functionality of
new releases and organizing the software for distribution.

3. Host-target development

• Most professional software development is based on a host-target model
.Software is developed on one computer (the host) but runs on a separate
machine (the target).

• More generally, we can talk about a development platform (host) and an
execution platform (target).

• A platform is more than just hardware. It includes the installed operating
system plus other supporting software such as a database management
system or, for development platforms, an interactive development
environment.

• Simulators are often used when developing embedded systems.

• Simulators speed up the development process for embedded systems

A software development platform should provide a range of tools to
support software engineering processes.

These may include:

1. An integrated compiler and syntax-directed editing system that allows
you to create, edit, and compile code.

2. A language debugging system.

3. Graphical editing tools, such as tools to edit UML models.

4. Testing tools, such as JUnit, that can automatically run a set of tests
on a new version of a program.

5. Tools to support refactoring and program visualization.

6. Configuration management tools to manage source code versions and
to integrate and build systems.

Open source development

A general-purpose IDE is a framework for

hosting software tools that provides data

management facilities for the software

being developed and integration

mechanisms that allow tools to work

together.

The best-known general-purpose IDE is

the Eclipse environment

(http://www.eclipse.org).

Issues
1. The hardware and software requirements of a component

If a component is designed for a specific hardware architecture, or relies on
some other software system, it must obviously be deployed on a platform that
provides the required hardware and software support.

2. The availability requirements of the system
High-availability systems may require components to be deployed on more than
one platform. This means that, in the event of platform failure, an alternative
implementation of the component is available.

3. Component communications
If there is a lot of intercomponent communication, it is usually best to deploy
them on the same platform or on platforms that are physically close to one
another. This reduces communications latency—the delay between the time that
a message is sent by one component and received by another.

Open-source licensing

• A fundamental principle of open-source development is that source
code should be freely available.

• Legally, the developer of the code owns the code. They can place
restrictions on how it is used by including legally binding conditions
in an open-source software license

• Licensing issues are important because if you use open-source
software as part of a software product, then you may be obliged by the
terms of the license to make your own product open source..

• The open-source approach is one of several business models for
software.

Open source development

• Linux operating system

• widely used as a server system and as a desktop environment .

• Java, Apache Web server, my Sql database management system

• Benefits

• Fairly cheap or free to acquire open source software.

• Mature open source systems are usually very reliable.

• Bugs are discovered and repaired more quickly than is usually
possible with proprietary software.

Most open-source licenses are variants of one of three general models:

1. The GNU General Public License (GPL).

This is a so-called reciprocal license that simplistically means that if you use
open-source software that is licensed under the GPL license, then you must make
that software open source.

2. The GNU Lesser General Public License (LGPL).

This is a variant of the GPL license where you can write components that
link to open-source code without having to publish the source of these components.
However, if you change the licensed component, then you must publish this as open
source.

3. The Berkley Standard Distribution (BSD) License.

This is a nonreciprocal license, which means you are not obliged to re-
publish any changes or modifications made to open-source code. You can include
the code in proprietary systems that are sold. If you use open-source components,
you must acknowledge the original creator of the code. eg.The MIT license

Companies managing projects that use open
source should:
1. Establish a system for maintaining information about open-source components that are
downloaded and used. You have to keep a copy of the license for each component that was valid at
the time the component was used. Licenses may change, so you need to know the conditions that you
have agreed to.

2. Be aware of the different types of licenses and understand how a component is licensed before it is
used. You may decide to use a component in one system but not in another because you plan to use
these systems in different ways.

3. Be aware of evolution pathways for components. You need to know a bit about the open-source
project where components are developed to understand how they might change in future.

4. Educate people about open source. It’s not enough to have procedures in place to ensure
compliance with license conditions. You also need to educate developers about open source and
open-source licensing.

5. Have auditing systems in place. Developers, under tight deadlines, might be tempted to break the
terms of a license. If possible, you should have software in place to detect and stop this.

6. Participate in the open-source community. If you rely on open-source products, you should
participate in the community and help support their development.

